

Department of Trauma and Emergency Medicine Phramongkutklao Hospital

Special Consideration of Pre-Hospital Trauma Patient Care

Thanananan Isarangura na Ayutthaya MD EP Nat Krairojananan MD FRCST

Scope

- Traumatic brain injury
- Burn
- Confined space medicine

Traumatic Brain Injury

Pathophysiology of CNS Injury

Primary injury

Direct damage to the brain

Secondary injury

- Systemic causes
- Intrinsic causes

Pathophysiology of secondary CNS injury

Systemic causes	Intrinsic causes
Hypoxia	Increased intracranial
Hypotension	pressure (ICP)
Anemia (blood loss)	Edema
Increased or decreased CO ₂	Hematomas
Increased or decreased	Seizures
blood glucose	

CNS Injury Management

- A-B-C
- Spinal motion restriction
- D-E
- Transport and destination decisions

Airway

- Open AW under spinal motion restriction: Jaw thrust or chin lift
- Clear AW: suction
- Maintain AW: need of definitive AW
 - o Protection: tongue, FB
 - Ventilation

Breathing

Provide 100% oxygen

Goal → 95% oxygen saturation or higher

Assist ventilations (as needed)

- Maintain normal ETCO₂ at 35 to 40 mm Hg
- Ventilation rates
 - Adults: 10 to 12 breaths/min
 - Pediatric: 12 to 20 breaths/min

No routine hyperventilation

Hyperventilation

Hyperventilation indicated for:

- Bilateral dilated and unresponsive pupils or Unequal pupils (with altered LOC)
- Abnormal posturing
- Neurologic deterioration \rightarrow Decreased GCS \geq 2 points in patient with initial GCS < 9

Ventilatory rate

Adult : 20 breaths/min

Child: 25 breaths/min

Infant: 30 breaths/min

Hyperventilation target

ETCO₂ 30–35 mm Hg

Circulation

- Control hemorrhage
- Prevent secondary brain injury
- Maintain adequate BP by hypotensive resuscitation, maintain SBP 90-100 mmHg

Neurologic assessment for disability

Conduct in the ambulance

The complete neurologic examinations

- Level of consciousness
- Pupillary reaction
- Motor function
- Sensory function

Level of Conscious Assessment

AVPU

- Alert
- Responds to Verbal stimulus
- Responds to Painful stimulus
- Unresponsive

Glasgow Coma Scale (GCS)

- scored <u>after</u> the A-B-C assess and correct
- Mild-Moderate-Severe
- modified GCS for pediatrics

Pupils Assessment

- Determine increasing of intracranial pressure
- Normally equal, round, and 3 to 5 mm in size
- Light in one pupil should constrict both
- Consensual light reflex tests CNs II and III

Motor Function

upper extremities

- Move the hands and arms
- Squeeze your fingers

lower extremities

- Wiggle the toes
- Push and pull their feet against resistance

in conscious patient:

light touch perception in both upper and lower extremities

in unconscious patient

- deep pain response
 - o Forehead rub
 - Nailbed compression

Transport and destination

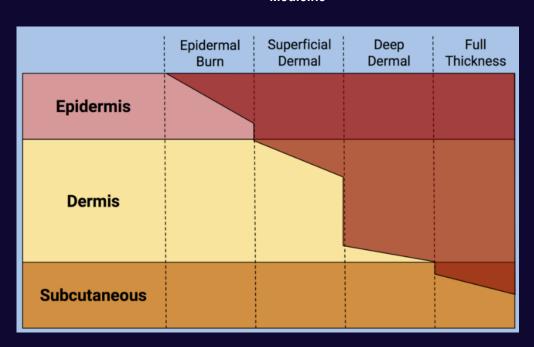
- Minimal scene time < 10 minutes
- Supine position
- Appropriate receiving facility
- Reassessment

Department of Trauma and Emergency Medicine

Burn

Spectrum of disease

- All severity of burns are not related in size
- Large burns might cause multiple organ systems
- Smoke inhalation can be life-threatening

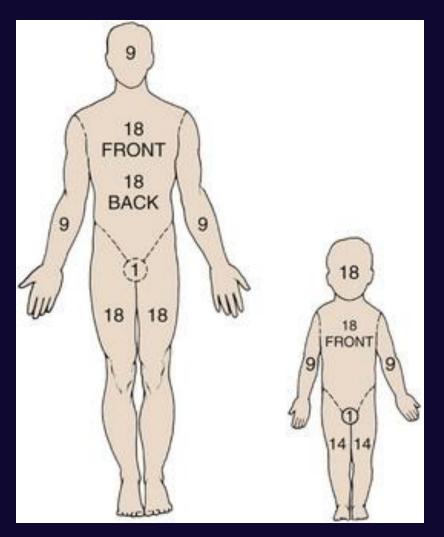


Burn Assessment: Depth

- Superficial (first-degree)
- Partial-thickness (second-degree)
 - Superficial
 - o Deep

Full-thickness (third- and fourth-degree)

Burn depth may progress over time


Burn Assessment: extension

Medicine

Burn size estimation

- Percent of body surface area (BSA)
- Rule of nines

Primary Assessment in : A & B

Airway

- swelling in smoke inhalation
- Consider early intubation / surgical airway

Breathing

- compromised from chest wall eschar
- toxic pulmonary injury
- Monitor ventilatory rate, SpO₂, and ETCO₂

Primary Assessment in Burn: C

Circulatory

- fluid leaks into damaged tissue causing swelling
- Hypotension
- Concomitant injury
- IV access and fluid replacement by Parkland's formula

Primary Assessment in Burn: D & E

Disability

Altered mentation indicated hypotension or hypoxia

Expose

- loss of body temperature
- Cover patient upon completion of assessment

Burn Management: Specific burn therapy

- Stop ongoing burning: remove cloth
- Cover with dry, sterile dressing
- Do not apply ice
- Do not use any ointments or topical antibiotic

Burn Management: fluid administration

Parkland formula

Total fluid in 1^{st} 24 hrs = (2–4 ml)(body weight: kg)(% BSA burned)

- First ½ given in the first 8 hours after burn
- Second ½ given in the next 16 hours after burn
- Adults: RLS
- Pediatric: 5% dextrose in RLS

Burn Management: transfer to definitive care

- Analgesia
- Transport to burn center as indicated
- Monitor for hyperventilation, fluid overload, heat loss
- Reassess the patient

Confined Space Medicine

Confined space

Department of Trauma and Emergency Medicine

Cause

- · Natural: earthquake, storm, flood
- Manmade: explosion, accident

- Collapsed structure / building
- Rocks, trees
- Trapped in vehicle

Confined Space Medicine (CSM)

- To rescue casualties trapped in confine space
- 35% of casualties are still alive

Factors influence CSM

Medicine

- Low lighting
- Bad ventilation
- Temperature
- Tight space
- Hazardous material
- Risk for exposure to body fluids

Scene sized up in CSM

Environment

- O2 deficit
- CO2 and other toxic gas from fire

Risk of secondary collapse

Principle of care in CSM

- Might spend hours in limited space along with patient
- Preventing sudden death from hyperkalemia and metabolic acidosis
- Prevent morbidity from infection and compartment syndrome

Prolonged management in CSM

- Decubitus ulcer
- Infection from contaminating own urine and feces
- Animals and insects bite
- Hypothermia
- Dehydration
- Bleeding

Limited access

- 'Remote assessment'
- Assess and treat only exposed/ accessible part

Increase patient outcome in CSM

- Rapid stabilize and extricate
- Immobilize as necessary
- Pain control
- Restrain for incorporate / unmovable patient

Spectrum of symptoms

- Airway obstruction from impacted dust
- Crush syndrome
- Traumatic amputation
- Hypothermia / burn
- HAZMAT and blast injury

Airway obstruction

- Mostly from impacted dust
- #1 cause of death in Kobe earthquake
- Building components: plaster, tiles, silica
- Block ventilation and gas exchange

Rarely from blood, vomitus or tooth

Blast injuries in CSM

Increased mortality due to explosion in close space

- Primary blast injury: PTX, PE, ruptured TM, ARDS (sequelae)
- Secondary blast injury: rare
- Tertiary blast injury: crush injury, blunt injury, traumatic asphyxia
- Quaternary blast injury: burn
- Quinary blast injury: toxic

Infection

- Open wound with delayed treatment -> wound infection
- Contamination with dirty water, own urine and stool
- Animals and insects bite

- Decontamination, wound cleansing
- Prophylaxis antibiotics

Extremities injury

- Clean and cover all wounds
- Immobilize all fractures / dislocation with non-compressive splint
- High index of suspicious for compartment syndrome, neurovascular injuries
- Adequate pain control
- · Field amputation only for entrapped extremity with sign of ischemia

Crush and Reperfusion Syndrome

Initiate treatment <u>before</u> extrication / lifting the overlay object

Cause of death

- Early: cardiac arrhythmia and hypovolemia
- Late: renal failure and infection

Prevention of EARLY death from crush syndrome

- Before extrication / lifting the overlay object
- Initiate IV fluid: NSS load
- connected with T-way
- Syringe filled with calcium gluconate, Sodium bicarbonate, RI and glucose
- ECG monitoring

Prevention of LATE death from crush syndrome

- Treatment of traumatic rhabdomyolysis
- IV fluid load
- Alkalinizing urine?

Department of Trauma and Emergency Medicine

Question